Swift electrons can undergo inelastic interactions not only with electrons but also with near-fields, which may result in an energy loss or gain. Developments in photon-induced near-field electron microscopy (PINEM) enable direct imaging of the plasmon near-field distribution with nanometer resolution. Here, we report an analysis of the surface plasmonic nearfield structure based on PINEM observations of silver nanowires. Single-photon order-selected electron images revealed the wavelike and banded structure of electric equipotential regions for a confined near-field integral associated with typical absorption of photon quanta (nℏω). Multimodal plasmon oscillations and second-harmonic generation were simultaneously observed, and the polarization dependence of plasmon wavelength and symmetry properties were analyzed. Based on advanced imaging techniques, our work has implications for future studies of the localized-field structures at interfaces and visualization of novel phenomena in nanostructures, nanosensors, and plasmonic devices.