Abstract. More than 20 years after the first presentation of optical parametric chirped-pulse amplification (OPCPA), the technology has matured as a powerful technique to produce high-intensity, few-cycle, and ultrashort laser pulses. The output characteristics of these systems cover a wide range of center wavelengths, pulse energies, and average powers. The current record performance of table-top, few-cycle OPCPA systems are 16 TW peak power and 22 W average power, which show that OPCPA is able to directly compete with Ti:sapphire chirped-pulse amplification-based systems as source for intense optical pulses. Here, we review the concepts of OPCPA and present the current state-of-the art performance level for several systems reported in the literature. To date, the performance of these systems is most generally limited by the employed pump laser. Thus, we present a comprehensive review on the recent progress in high-energy, high-average-power, picosecond laser systems, which provide improved performance relative to OPCPA pump lasers employed to date. From here, the impact of these novel pump lasers on table-top, few-cycle OPCPA is detailed and the prospects for next-generation OPCPA systems are discussed.