Dielectric properties of PAA-g-PEO-7% solutions with different counterions were measured as a function of concentration and temperature over a frequency range of 40 Hz to 110 MHz. After the contribution of electrode polarization effects was subtracted, the dielectric spectra of PAA-g-PEO-7% solutions showed three relaxation processes in the experimental frequency range, named low-, mid-, and high-frequency relaxation. The observed three relaxations were strictly analyzed by using the Cole-Cole relaxation function, and the dielectric parameters (dielectric increment Δε and the relaxation time τ) were obtained. The scaling relation of dielectric increment and relaxation time of high frequency with concentration C(p) were obtained and compared with the predictions of scaling theories. The information on the dynamics and microstructure of PAA-g-PEO-7% was obtained. Using different counterion species, the mid- and high-frequency relaxation mechanisms were attributed to the fluctuation of condensed counterions and free counterions, respectively, and the low-frequency relaxation was considered to be caused by the interface polarization of a complex formed by the hydrogen bonding between carboxylic group of PAA and ether oxygen on the side-chain PEO. In addition, by means of Eyring equation, the thermodynamic parameters, enthalpy change ΔH and entropy change ΔS, of the three relaxations were calculated from the relaxation time and discussed from the microscopic thermodynamical view.