Gas filled hollow microparticles, i.e., microbubbles and microballoons, are soft matter devices used in a number of diverse applications ranging from protein separation and purification in food science to drilling technology and ultrasound imaging. Aqueous dispersions of these mesoscopic systems are characterized by the stabilization of the air/water interface by a thin shell of phospholipid bilayer or multilayers or by a denatured and cross-linked proteic matrix. We present a study of a type of microballoons based on modified poly(vinyl alcohol), PVA, a synthetic biocompatible polymer, with new structural features. A cross-linking reaction carried out at the air/water interface provides polymeric air-filled microbubbles with average dimensions depending on the reaction temperature. Characterization of diameters and shell thicknesses for microbubbles obtained at different temperatures has been carried out. Conversion to solvent-filled hollow microcapsules is possible by soaking microbubbles in dimethyl sulfoxide. Microcapsules permeability to fluorescent labeled dextran molecular weight standards was correlated to the mesh size of the polymer network of the shell. Microbubbles were covalently grafted under very mild conditions with beta-cyclodextrin and poly-l-lysine with a view to assay the capability of the device for delivery of hydrophobic drugs or DNA. PVA based microballoons show a remarkable shelf life of several months, their external surface can be decorated with many biologically relevant molecules. These features, together with a tested biocompatibility, make them attractive candidates for use as multifunctional device for diagnosis and therapeutic purposes, i.e., as ultrasound reflectors in ecographic investigation and as drug platforms for in situ sonoporation.
A topologically extended model of a chemically cross-linked hydrogel of poly(vinyl alcohol) (PVA) at high hydration degree has been developed for a molecular dynamics simulation with atomic detail at 323 K. The analysis of the 5 ns trajectory discloses structural and dynamic aspects of polymer solvation and elucidates the water hydrogen bonding and diffusion in the network. The features of local polymer dynamics indicate that PVA mobility is not affected by structural constraints of chemical junctions at the investigated cross-linking density, with a prevailing dumping effect due to water interaction. Simulation results are validated by a favorable comparison with findings of an incoherent quasi-elastic neutron scattering study of the same hydrogel system.
In this paper, we present some new case examples where the chemical versatility of poly (vinyl alcohol) (PVA) can be used for potential biomedical applications. PVA, the polymeric material used for designing new nanostructured devices, is water soluble, biocompatible and has excellent physical properties. We point out the possibility of obtaining wall-to-wall chemical hydrogels as well as microgels without diminishing the biocompatibility available in the starting PVA material. Injectability is another important factor to take into account in controlled drug delivery for gene therapy. In this respect, in this paper, established and more innovative methods are prospected in order to obtain particles with dimensions suitable for these applications.
Microbubbles (MBs) are commonly used as injectable ultrasound contrast agent (UCA) in modern ultrasonography. Polymer-shelled UCAs present additional potentialities with respect to marketed lipid-shelled UCAs. They are more robust; that is, they have longer shelf and circulation life, and surface modifications are quite easily accomplished to obtain enhanced targeting and local drug delivery. The next generation of UCAs will be required to support not only ultrasound-based imaging methods but also other complementary diagnostic approaches such as magnetic resonance imaging or computer tomography. This work addresses the features of MBs that could function as contrast agents for both ultrasound and magnetic resonance imaging. The results indicate that the introduction of iron oxide nanoparticles (SPIONs) in the poly(vinyl alcohol) shell or on the external surface of the MBs does not greatly decrease the echogenicity of the host MBs compared with the unmodified one. The presence of SPIONs provides enough magnetic susceptibility to the MBs to accomplish good detectability both in vitro and in vivo. The distribution of SPIONs on the shell and their aggregation state seem to be key factors for the optimization of the transverse relaxation rate.
The need of innovative, multifunctional biomaterials for the partial or complete tissue replacement is the driving force for the search of improvements of the performances of the available materials and in the formulation of new ones. Addressing the focus to vitreous substitution, we have explored the possibility of using injectable aqueous solutions of poly(vinyl alcohol), PVA, derivatives able to form hydrogels in the ocular cavity upon UV-vis irradiation with visible light. In particular, we describe the features of hydrogels from methacrylate grafted PVA, PVA-MA, in terms of structural characteristics, degradation processes, release of low- and high- molecular weight molecules, and in vitro gelation kinetics. The mechanical properties, drug delivery tests, and rheology tests suggest that PVA-MA derivatives have the potential to become a useful material for vitreous substitution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.