We review some basic features of shear wave generation and energy balance for a 2D anti plane rupture. We first study the energy balance for a flat fault, and for a fault that contains a single localized kink. We determine an exact expression for the partition between strain energy flow released from the elastic medium surrounding the fault, radiated energy flow and energy release rate. This b~lance depends only on the rupture speed and the residual stress intensity factor. When the fault contains a kink, the energy available for fracture is reduced so that the rupture speed is reduced. When rupture speed changes abruptly, the radiated energy flow also changes abruptly. As rupture propagates across the kink, a shear wave is emitted that has a displacement spectral content that decreases like ro-2 at high frequencies. We then use spectral elements to model the propagation of an antiplane crack with a slip-weakening friction law. Since the rupture front in this case has a finite length scale, the wave emitted by the kink is smoothed at very high frequencies but its general behavior is similar to that predicted by the simple sharp crack model. A model of a crack that has several kinks and wanders around a mean rupture directions, shows that kinks reduce the rupture speed along the average rupture direction of the fault. Contrary to flat fault models, a fault with kinks produces high frequency waves that are emitted every time the rupture front turns at a kink. Finally, we discuss the applicability of the present results to a 3D rupture model.