Reef habitats of the tropical Atlantic are separated by river outflows and oceanic expanses that may preclude larval dispersal or other population connections in shorefishes. To examine the impact of these habitat discontinuities on the intraspecific phylogeography of reef-associated species we conducted range-wide surveys of two amphi-Atlantic reef fishes that have dispersive pelagic larval stages. Based on 593 bp of mtDNA cytochrome b from the rock hind Epinephelus adscensionis and 682 bp from the greater soapfish Rypticus saponaceous (n=109 and 86, respectively), we found evidence of relatively ancient separations as well as recent surmounting of biogeographic barriers by dispersal or colonization. Rock hind showed slight but significant population genetic differentiation across much of the tropical Atlantic Ocean (F ST =0.056), but deep divergence between the southeastern United States and seven other localities from the Bahamas to the south, central and east Atlantic (mean pairwise d=0.040, overall F ST =0.867). The geographic distribution of the two rock hind lineages is highly unusual in genetic studies of Caribbean Sea reef fishes, because those lineages are separated by less than 250 km of open water within a major biogeographic region. In contrast, highly significant population genetic structure was observed among greater soapfish from the SW Caribbean, Brazil, and mid-Atlantic ridge (F ST =0.372), with a deep evolutionary separation distinguishing putative R. saponaceous from West Africa (mean pairwise d=0.044, overall F ST =0.929). Both species show evidence for a potential connection between the Caribbean and Brazilian provinces. While widespread haplotype sharing in rock hind indicates that larvae of this species cross oceanic expanses of as much as 2000 km, such a situation is difficult to reconcile with the isolation of populations in Florida and the Bahamas separated by only 250 km. These findings indicate that populations of some species in disjunct biogeographic zones may be isolated for long periods, perhaps sufficient for allopatric speciation, but rare gene flow between zones may preclude such evolutionary divergence in other species.