In this work, undoped, aluminum-, and gallium-doped ZnO thin films (ZnO-H, AZO-H, and GZO-H, respectively) deposited on soda-lime glass substrates by magnetron sputtering method in a gas mixture of hydrogen and argon are annealed at various temperatures in the range of 200–500°C in air to evaluate the durability of those films under annealing temperature. From photoluminescence spectra, formation of point defects, especially oxygen vacancies, when hydrogen diffuses out of the films at high annealing temperature is exhibited via a significant increase of visible emissions. We find out that carrier concentration and Hall mobility of AZO-H and ZnO-H films dramatically decrease, while those of GZO-H film are still stable as the annealing temperature increased from 200°C to 300°C. We proposed a model for interpreting the thermal durability of GZO-H film that, at an annealing temperature of 300°C, Ga3+ ions located at adjacent Zn sites can push hydrogen atoms, which are broken out of the antibonding sites which are perpendicular to the
c
-axis (AB┴), into bond center sites paralleled to the
c
-axis (BC//). The movement of hydrogen from AB┴ to BC// site also gives rise to the durability of electrical properties of GZO-H films at the high annealing temperature.