A specific role for ascorbate (AA) in brain development has been postulated based on a rise of AA levels in fetal brain (Kratzing et al., 1985). To evaluate the role of AA during CNS development, we analyzed the survival, proliferation, and differentiation of AA-treated CNS precursor cells isolated from rat embryonic cortex. Immunocytochemical analyses revealed that AA promoted the in vitro differentiation of CNS precursor cells into neurons and astrocytes in a cell density-dependent manner. Additionally, AA increased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) of postmitotic neurons in primary neuronal cultures. Differential expression analysis of genes specific to neuronal or glial differentiation revealed an AA-dependent increase in the expression of genes that could potentially compound the effects of AA on cell differentiation. These data suggest that AA may act in the developing brain to stimulate the generation of CNS neurons and glia, thereby assisting in the formation of neural circuits by promoting the acquisition of neuronal synaptic functions.