Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Using the experimental capability of the novel X-ray diffraction instrument available at the 25 Tesla Florida Split Coil Magnet at the NHMFL, Tallahassee we present an extensive investigation on the magnetostriction of polycrystalline AlFe2B2. The magnetostriction was measured near the ferromagnetic transition temperature (Curie temperature TC = 280 K, determined via DC magnetization measurements), namely, at 250, 290, and 300 K. AlFe2B2 exhibits an anisotropic change in lattice parameters as a function of magnetic field near the Curie temperature, and a monotonic variation as a function of applied field has been observed, i.e., the c-axis increases significantly while the a-and b-axes decrease with the increasing field in the vicinity of TC, irrespective of the measurement temperature. The volume magnetostriction decreases with decreasing temperature and changes its sign across TC. Density functional theory calculations for the non-polarized and spin-polarized (ferromagnetic) models confirm that the observed changes in lattice parameters due to spin polarization are consistent with the experiment. The relationships for magnetostriction are estimated based on a simplified Landau model that agrees well with the experimental results.
Using the experimental capability of the novel X-ray diffraction instrument available at the 25 Tesla Florida Split Coil Magnet at the NHMFL, Tallahassee we present an extensive investigation on the magnetostriction of polycrystalline AlFe2B2. The magnetostriction was measured near the ferromagnetic transition temperature (Curie temperature TC = 280 K, determined via DC magnetization measurements), namely, at 250, 290, and 300 K. AlFe2B2 exhibits an anisotropic change in lattice parameters as a function of magnetic field near the Curie temperature, and a monotonic variation as a function of applied field has been observed, i.e., the c-axis increases significantly while the a-and b-axes decrease with the increasing field in the vicinity of TC, irrespective of the measurement temperature. The volume magnetostriction decreases with decreasing temperature and changes its sign across TC. Density functional theory calculations for the non-polarized and spin-polarized (ferromagnetic) models confirm that the observed changes in lattice parameters due to spin polarization are consistent with the experiment. The relationships for magnetostriction are estimated based on a simplified Landau model that agrees well with the experimental results.
Oxygen is a unique molecule that possesses a spin quantum number S=1. In the condensed phases of oxygen, the delicate balance between the antiferromagnetic interaction and van der Waals force results in the various phases with different crystal structures. By applying ultrahigh magnetic fields, the antiferromagnetic coupling between O2 molecules breaks, and novel high-field phases can appear. We have investigated the physical properties of condensed oxygen under ultrahigh magnetic fields and have found that the stable crystal structure of solid oxygen changes around 100 T. Even in liquid oxygen, we observed a strong acoustic attenuation, which indicates the fluctuation of local molecular arrangements. These results demonstrate that magnetic fields can modulate the packing structure of oxygen through spin-lattice coupling. Our study implies the possibility of controlling oxygen-related (bio-)chemical processes by using an external magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.