A combined experimental and numerical simulation study is presented on two sets of nominally identical Hg 1Àx Cd x Te single-color back-illuminated midwaveinfrared n-on-p photodetectors grown by liquid-phase epitaxy, p-doped with Hg vacancies and with Au, respectively. The present numerical model includes a novel formulation for band-to-band tunneling, which overcomes the intrinsic limitations of the classical Kane description without introducing numerical issues typical of other approaches. Our study confirms that adopting n-on-p architectures, avoiding metal vacancy doping, and reducing the acceptor density in the absorber region are prerequisites for obtaining high-operating-temperature photodetectors. A significant contribution to the dark current in both sets of devices is attributed to impact ionization, crucial to obtain a satisfactory explanation for the measured characteristics also at low to intermediate bias.