We investigate the phase diagram of the Sakaguchi-Kuramoto model with a higher order interaction along with the traditional pairwise interaction. We also introduce asymmetry parameters in both the interaction terms and investigate the collective dynamics and their transitions in the phase diagrams under both unimodal and bimodal frequency distributions. We deduce the evolution equations for the macroscopic order parameters and eventually derive pitchfork and Hopf bifurcation curves. Transition from the incoherent state to standing wave pattern is observed in the presence of the unimodal frequency distribution. In contrast, a rich variety of dynamical states such as the incoherent state, partially synchronized state-I, partially synchronized state-II, and standing wave patterns and transitions among them are observed in the phase diagram, via various bifurcation scenarios including saddle-node and homoclinic bifurcations, in the presence of bimodal frequency distribution. Higher order coupling enhances the spread of the bistable regions in the phase diagrams and also leads to the manifestation of bistability between incoherent and partially synchronized states even with unimodal frequency distribution, which is otherwise not observed with the pairwise coupling. Further, the asymmetry parameters facilitate the onset of several bistable and multistable regions in the phase diagrams. Very large values of the asymmetry parameters allow the phase diagrams to admit only the monostable dynamical states.