In this work, we use the approximate-master-equation approach to study the dynamics of the Kinouchi-Copelli neural model on various networks. By categorizing each neuron in terms of its state and also the states of its neighbors, we are able to uncover how the coupled system evolves with respective to time by directly solving a set of ordinary differential equations. In particular, we can easily calculate the statistical properties of the time evolution of the network instantaneous response, the network response curve, the dynamic range, and the critical point in the framework of the approximate-master-equation approach. The possible usage of the proposed theoretical approach to other spreading phenomena is briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.