2020
DOI: 10.1007/s13369-020-04721-1
|View full text |Cite|
|
Sign up to set email alerts
|

High-Order Fuzzy Time Series Forecasting by Using Membership Values Along with Data and Support Vector Machine

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
12
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 31 publications
(13 citation statements)
references
References 38 publications
0
12
0
1
Order By: Relevance
“…And it is proved that the RBD-LSSVM model has good performance in nonlinear time series modeling and prediction based on the annual sunspot number series and monthly total ozone column series data. Pattanayak, R. M, et al [87] proposed an interval unequal length determination method based on fuzzy cmeans clustering, and adopted support vector machine (SVM) for modeling, while considering the value of membership. The prediction accuracy of this model is better than other methods through 10 different time series data sets.…”
Section: )Support Vector Machinementioning
confidence: 99%
“…And it is proved that the RBD-LSSVM model has good performance in nonlinear time series modeling and prediction based on the annual sunspot number series and monthly total ozone column series data. Pattanayak, R. M, et al [87] proposed an interval unequal length determination method based on fuzzy cmeans clustering, and adopted support vector machine (SVM) for modeling, while considering the value of membership. The prediction accuracy of this model is better than other methods through 10 different time series data sets.…”
Section: )Support Vector Machinementioning
confidence: 99%
“…Pattanayak et al. [33] have proposed a FTS forecasting model in which FCM is used to determine non-uniform length of intervals, SVM to determine FLRs, and autocorrelation and partial autocorrelation functions to determine the order of the model. Accuracy of the model has been evaluated on ten different time series data of TAIEX, and forecasting results have been compared with existing related studies.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Mô hình này dựa trên nền tảng của các mô hình FTS thông thường, có độ chính xác dự báo tốt hơn mô hình [5]. Thêm nữa, các công trình nghiên cứu trong [12] đã đề xuất các các mô hình FTS bậc cao nhằm khắc phục các hạn chế của các mô hình FTS bậc nhất [3], [5]. Để giảm thiểu thời gian tính toán phức tạp trong ma trận quan hệ mờ, Singh [13] đã đề xuất một phương pháp mới trong cách tiếp cận mô hình FTS.…”
Section: Giới Thiệuunclassified