Monolithic integration of III–V semiconductor lasers with Si circuits can reduce cost and enhance performance for optical interconnects dramatically. We propose and investigate plasmonic III–V nanolasers as monolithically integrated light source on Si chips due to many advantages. First, these III–V plasmonic light sources can be directly grown on Si substrates free of crystallographic defects due to the submicron cavity footprint (250 nm × 250 nm) being smaller than the average defect free region size of the heteroepitaxial III–V material on Si. Secondly, the small lateral and vertical dimensions facilitate process co-integration with Si complementary metal-oxide-semiconductor (CMOS) in the front end of the line. Thirdly, combining with monolithically integrated CMOS circuits with low device capacitance and parasitic capacitance, the nano-cavity optoelectronic devices consume orders of magnitude less power than the conventional lasers and reduce the energy consumption. Fourthly, the modulation bandwidth of the plasmonic light-sources is enhanced to significantly higher than conventional lasers due to enhanced photon state density and transition rate. In addition, we show that these device performance are very robust after taking into account the surface recombination and variations in device fabrication processes.