A novel energy conversion and storage system using seawater as a cathode is proposed herein. This system is an intermediate between a battery and a fuel cell, and is accordingly referred to as a hybrid fuel cell. The circulating seawater in this opencathode system results in a continuous supply of sodium ions, which gives this system superior cycling stability that allows the application of various alternative anodes to sodium metal by compensating for irreversible charge losses. Indeed, hard carbon and Sn-C nanocomposite electrodes were successfully applied as anode materials in this hybrid-seawater fuel cell, yielding highly stable cycling performance and reversible capacities exceeding 110 mAh g − 1 and 300 mAh g − 1 , respectively. NPG Asia Materials (2014) 6, e144; doi:10.1038/am.2014.106; published online 21 November 2014
INTRODUCTIONThe shift toward sustainable energy is one of the key challenges faced by the modern society and an important part of science and technology development. The performance of sustainable energy technologies must be improved to enable the more efficient utilization of intermittent-renewable electricity sources. In addition, because of the climate change, that is, global warming, because of carbon dioxide emissions, 1-3 investment is needed in renewable energy sources for electricity generation and transport. Both aims rely on the development of energy storage devices that can balance intermittent supply with consumer demands. Among the various energy conversion and storage systems, rechargeable batteries are attracting substantial attention. In particular, rechargeable lithium-ion batteries are considered a promising power source for hybrid electric vehicles and electric vehicles because of their high power and energy density. 4 However, the continuous growth of the lithium-battery market might induce a lack of resources such as lithium and cobalt. Thus, scientists from several countries have started to explore battery technologies that use alternatives to lithium, such as sodium or magnesium. 5,6 Among these alternatives, sodium possesses several advantages, such as low cost and natural abundance. In principle, the reversible storage mechanisms for sodium ions are very similar to those for lithium ions. In addition, the voltage and cycling stability of sodium-ion batteries are competitive with those of lithium-ion batteries.The same trend is indeed observed for new battery chemistries that utilize oxygen as the active cathode species; sodium has recently attracted attention as a replacement for lithium in these alkali-metalair batteries. 7-11 Such batteries are promising energy storage systems that provide very high theoretical energy densities; however, the use of pure alkali metals (both Li and Na) as anodes create safety and cost