Plasmonic color filters employing a single optically-thick nanostructured metal layer have recently generated considerable interest as an alternative to colorant-based color filtering technologies, due to their reliability, ease of fabrication, and high color tunability. However, their relatively low transmission efficiency (,30%) needs to be significantly improved for practical applications. The present work reports, for the first time, a novel plasmonic subtractive color filtering scheme that exploits the counter-intuitive phenomenon of extraordinary low transmission (ELT) through an ultrathin nanostructured metal film. This approach relies on a fundamentally different color filtering mechanism than that of existing plasmonic additive color filters, and achieves unusually high transmission efficiencies of 60 , 70% for simple architectures. Furthermore, owing to short-range interactions of surface plasmon polaritons at ELT resonances, our design offers high spatial resolution color filtering with compact pixel size close to the optical diffraction limit (,l/2), creating solid applications ranging from imaging sensors to color displays. N anopatterned ultrathin metal films are investigated for use as highly transmissive plasmonic subtractive color filter arrays with sub-micrometer spatial resolution. This represents an attractive approach for onchip color filters, which are vital components for future displays, image sensors, digital photography, projectors and other optical measurement instrumentation. Previous approaches based on traditional colorant filters employ organic dyes or chemical pigments that are vulnerable to processing chemicals, and undergo performance degradation under long-duration ultraviolet irradiation or at high temperatures. Furthermore, highly-accurate lithographic alignment techniques are required to pattern each type of pixel in a large-area array, significantly increasing fabrication complexity and cost. Plate-like dielectric deflectors have recently been proposed 1 , but this scheme suffers from intrinsic limitations due to poor color purity, since the deflector covers only half of the total area. Nanoplasmonic color filters have been proposed recently as a promising means of overcoming the above limitations [2][3][4][5][6][7][8][9][10][11] . The well-known extraordinary optical transmission (EOT) phenomenon 12-14 , observed in a single opticallythick metal film perforated with a periodic subwavelength hole array, has been extensively studied for additive color filtering (ACF) applications over the past decade. Such plasmonic color filters reject the entire visible spectrum except for selective transmission bands that are associated with the excitation of surface plasmon polaritons (SPPs) 2,6-14 . These EOT transmission bands can be spectrally tuned throughout the entire visible spectrum by simply adjusting geometric parameters, such as the periodicity, shape and size of nanoholes, leading to the high color tunability. Single-layer nanostructured metals also have significant advantage...