“…These sensors rely on different physical properties, such as optical, piezoelectric and piezoresistive effects [3,4,5]. Recently, piezoresistive strain gauges based on polymer matrix filled with carbon nanostructures, such as carbon nanotubes (CNT) [6,7], reduced graphene oxide (rGO) [8,9], graphene nanoplatelets (GNP) or multilayer graphene nanoplatelets (MLG) [10,11,12,13,14,15], have gained considerable attention from both academia and industry due to their high sensitivity, mechanical compatibility with the host structures, isotropic response and size scalability. These types of sensor are typically made of polymer composites filled with carbon nanostructures, which create a percolating electrical network, whose resistance is dependent on the distance between particles and on the piezoresistivity of the particles themselves [16].…”