Innovations related to textiles-based sensors have drawn great interest due to their outstanding merits of flexibility, comfort, low cost, and wearability. Textile-based sensors are often tied to certain parts of the human body to collect mechanical, physical, and chemical stimuli to identify and record human health and exercise. Until now, much research and review work has been carried out to summarize and promote the development of textile-based sensors. As a feature, we focus on textile-based mechanical sensors (TMSs), especially on their advantages and the way they achieve performance optimizations in this review. We first adopt a novel approach to introduce different kinds of TMSs by combining sensing mechanisms, textile structure, and novel fabricating strategies for implementing TMSs and focusing on critical performance criteria such as sensitivity, response range, response time, and stability. Next, we summarize their great advantages over other flexible sensors, and their potential applications in health monitoring, motion recognition, and human-machine interaction. Finally, we present the challenges and prospects to provide meaningful guidelines and directions for future research. The TMSs play an important role in promoting the development of the emerging Internet of Things, which can make health monitoring and everyday objects connect more smartly, conveniently, and comfortably efficiently in a wearable way in the coming years.