We report a detailed first principles density functional calculations to understand the electronic structure and transport properties of Zn-based pnictides ZnXPn2 (X: Si, Ge, and Sn; Pn: P and As) and ZnSiSb2. The electronic properties calculated using Tran-Blaha modified Becke-Johnson functional reveals the semi-conducting nature, and the resulting band gaps are in good agreement with experimental and other theoretical reports. We find a mixture of heavy and light bands in the band structure which is an advantage for good thermoelectric (TE) properties. The calculated transport properties unveils the favour p-type conduction in ZnXP2 (X: Si, Ge, and Sn) and n-type conduction in ZnGeP2 and ZnSiAs2. Comparison of transport properties of Zn-based pnictides with the prototype chalcopyrite thermoelectric materials implies that the thermopower values of the investigated compounds to be higher when compared with the prototype chalcopyrite thermoelectric materials, together with the comparable values for electrical conductivity scaled by relaxation time. In addition to this, Zn-based pnictides are found to possess higher thermopower than well known traditional TE materials at room temperature and above which motivates further research in these compounds.