In this review, I present the main highlights of my works in the development of bioelectrocatalysis, which can be used in widespread applications, particularly for the design of biosensor and biofuel cells. In particular, I focus on research progress made in two key bioelectrocatalytic reactions: glucose oxidation by flavin adenine dinucleotide-dependent glucose dehydrogenase and oxygen reduction by bilirubin oxidase. I demonstrate the fundamental principles of bioelectrocatalysis and the requirements for enhancing the catalytic performance, including the choice of a mediator of redox reactions, immobilization, and electrode materials. These methods can allow for achieving control of the bioelectrocatalytic reaction, thereby overcoming obstacles toward their industrial applications.