Objective
To describe the phenotypes associated with laser-induced retinal damage in children.
Methods
Five patients with maculopathy and reduced visual acuity associated with laser pointer use were evaluated. Best-corrected visual acuity, retinal structure, and function were monitored with color fundus, infrared (IR), and red-free images, fundus autofluorescence (AF), spectral domain-optical coherence tomography (SD-OCT), and full-field electroretinography (ERG).
Results
All five laser pointer injury patients had retinal lesions resembling a macular dystrophy (1 bilateral and 4 unilateral). These lesions were irregular in shape but all had a characteristic dendritic appearance with linear streaks radiating from the lesion. Photoreceptor damage was present in all patients, but serial OCT monitoring showed that subsequent photoreceptor recovery occurred over time in the eyes of at least 4 patients. 1 patient also had bilateral pigment epithelial detachments (PED). Both hyper- and hypoautofluorecence were observed in the laser damage area.
Conclusions
In general, OCT and IR images are quite useful to diagnose laser damage, but AF is not as sensitive. Laser pointer damage in children can occasionally be misdiagnosed as a macular dystrophy disease, but the distinctive lesions and OCT features are helpful for differentiating laser damage from other conditions.