When considering dynamically stable resonators, ring lasers are good choices because they have a stability interval that is twice as large as that of linear resonators and sensitivity to misalignment decreasing with pump power; however, the literature does not provide easy design guidelines. A ring resonator utilizing Nd:YAG side pumped by diodes allowed single-frequency operation. The output single-frequency laser had good output characteristics; however, the overall length of the resonator did not allow for building a compact device with low misalignment sensitivity and larger spacing between longitudinal modes which could improve single-frequency performance. Based on previously developed equations, which allow for ease of design of a ring dynamically stable resonator, we discuss how to build an equivalent ring resonator, aiming to building a shorter resonator with the same stability zone parameters. The study of the symmetric resonator containing a pair of lenses allowed us to find the conditions to build the shortest possible resonator.