2021
DOI: 10.1016/j.ijheatmasstransfer.2021.121574
|View full text |Cite
|
Sign up to set email alerts
|

High precision simulation and analysis of non-Fourier heat transfer during laser processing

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
1
1

Relationship

1
7

Authors

Journals

citations
Cited by 19 publications
(5 citation statements)
references
References 39 publications
0
5
0
Order By: Relevance
“…where {u} is a vector consisting of all points u, and {f} is a known vector formed by eqn (13) or (16) and the source term s in eqn (15). By solving eqn (17), we can obtain the values of u at all points.…”
Section: Finite Line Methods For Solving Convection-diffusion Equationsmentioning
confidence: 99%
See 1 more Smart Citation
“…where {u} is a vector consisting of all points u, and {f} is a known vector formed by eqn (13) or (16) and the source term s in eqn (15). By solving eqn (17), we can obtain the values of u at all points.…”
Section: Finite Line Methods For Solving Convection-diffusion Equationsmentioning
confidence: 99%
“…To overcome these drawbacks in stability, accuracy and suitability of irregular geometries, Gao et al [15] proposed a new type of collocation method, called the free element method (FrEM), which absorbs the advantages of FEM in stability, FDM in easy use and MFM in suitability for complicated geometries. FrEM has been successfully used to solve heat conduction [16], piezoelectric [17], solid mechanics [18] and fluid mechanics [19] problems. However, when using high-order free elements in FrEM, a lot of element nodes are required.…”
Section: Introductionmentioning
confidence: 99%
“…In each sub‐domain, Mξprefix×Mη$$ {M}_{\xi}\times {M}_{\eta } $$ nodes in total are distributed where Mξ,Mη$$ {M}_{\xi },{M}_{\eta } $$ are the numbers of nodes along the different directions in the sub‐domain and for any collocation node xa$$ {x}^a $$, a local collocation element with Kξprefix×Kη$$ {K}_{\xi}\times {K}_{\eta } $$ nodes can be constructed based on the collocation node and the surrounding nodes. In general, the uniform node distribution and the Chebyshev–Gauss–Lobatto node distribution 36 can be selected. Obviously, the uniformly distributed nodes are the most comfortable ones in the proposed technique.…”
Section: Domain Decomposition and Mapping Techniquementioning
confidence: 99%
“…Based on the DPL model, Majchrzak [32] calculated the internal thermal processes of cylindrical microdomains (Cr, Au) under the action of an ultra-short laser pulse and introduced the numerical model of the melting and re-solidification of the materials. Xu et al [33] proposed an effective numerical method to solve the complexity of DPL equations. The 1-D, 2-D and 3-D models in single-phase media under laser pulse were numerically simulated.…”
Section: Introductionmentioning
confidence: 99%