Sodium is a promising anode material for batteries due to its low standard electrode potential, high abundance and low cost. In this work, we report a new rechargeable ~ 3.5 V sodium ion battery using Na anode, amorphous carbon-nanosphere cathode and a starting electrolyte comprised of AlCl 3 in SOCl 2 with uoride-based additives. The battery, exhibiting ultrahigh ~ 2800 mAh/g rst discharge capacity, could cycle with a high reversible capacity up to ~ 1000 mAh/g. Through battery cycling, the electrolyte evolved to contain NaCl, various sulfur and chlorine species that supported anode's Na/Na + redox and cathode's chloride/chlorine redox. Fluoride-rich additives were important in forming a solid-electrolyte interface, affording reversibility of the Na anode for a new class of high capacity secondary Na battery.
Main TextDevising new battery concepts is important to meeting society's growing demand of energy storage.Different rechargeable batteries have been developed, including lithium ion batteries (LIBs), sodium ion batteries (SIBs) and aluminum ion batteries (AIBs) [1][2][3][4][5][6][7][8][9] . Prior to the invention of secondary LIBs, a primary Li-metal battery was developed in the 1970's using thionyl chloride (SOCl 2 ) as a catholyte, Li metal as anode and amorphous carbon as the positive electrode [10][11][12][13][14][15][16] . The Li-SOCl 2 battery was attractive due to its high energy density, but did not receive sustained interest due to the lack of rechargeability 17,18 . The battery discharges through Li anode oxidation and catholyte SOCl 2 reduction into sulfur (S), sulfur dioxide (SO 2 ), and chloride ion (Cl -) on the carbon electrode 19,20 . The Clions react with Li + stripped from