Abstract. Smallholder agriculture is the bedrock of the food production system in
sub-Saharan Africa. Yields in Africa are significantly below potentially
attainable yields for a number of reasons, and they are particularly vulnerable
to climate change impacts. Monitoring of these highly heterogeneous landscapes
is needed to respond to farmer needs, develop an appropriate policy and ensure food security, and Earth observation (EO) must be part of these efforts, but there is a lack of ground data for developing and testing EO methods in western Africa, and in this paper, we present data on (i) crop locations, (ii) biophysical
parameters and (iii) crop yield, and biomass was collected in 2020 and 2021 in Ghana and is reported in this paper. In 2020, crop type was surveyed in more
than 1800 fields in three different agroecological zones across Ghana (the Guinea Savannah, Transition and Deciduous zones). In 2021, a smaller number of fields were surveyed in the Guinea Savannah zone, and additionally, repeated
measurements of leaf area index (LAI) and leaf chlorophyll concentration were
made on a set of 56 maize fields. Yield and biomass were also sampled at
harvesting. LAI in the sampled fields ranged from 0.1 to 5.24 m2 m−2,
whereas leaf chlorophyll concentration varied between 6.1 and 60.3 µg cm−2.
Yield varied between 190 and 4580 kg ha−1, with an important within-field
variability (average per-field standard deviation 381 kg ha−1). The data are used in this paper to (i) evaluate the Digital Earth Africa 2019 cropland masks, where 61 % of sampled 2020/21 cropland is flagged as cropland by the data set, (ii) develop and test an LAI retrieval method from Earth observation Planet surface reflectance data (validation correlation coefficient R=0.49, root mean square error (RMSE) 0.44 m2 m−2), (iii) create a maize classification data set for Ghana for 2021 (overall accuracy within the region tested: 0.84), and (iv) explore the relationship between maximum LAI and crop yield using a linear model
(correlation coefficient R=0.66 and R=0.53 for in situ and Planet-derived LAI, respectively). The data set, made available here within the
context of the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) initiative, is an important contribution to
understanding crop evolution and distribution in smallholder farming systems and will be useful for researchers developing/validating methods to monitor
these systems using Earth observation data. The data described in this paper are available from https://doi.org/10.5281/zenodo.6632083
(Gomez-Dans et al., 2022).