Abstract:The capability to perform high-resolution, wide field-of-view (FOV) microscopy imaging is highly sought after in biomedical applications. In this paper, we report a wide FOV microscopy system that uses a closed-circuit-television (CCTV) lens for image relay and a flatbed scanner for data acquisition. We show that such an imaging system is capable of capturing a 10 mm × 7.5 mm FOV image with 0.78 µm resolution, resulting in more than 0.5 billion pixels across the entire image. The resolution and field curve of the proposed system were characterized by imaging a USAF resolution target and a hole-array target. To demonstrate its application, 0.5 gigapixel images of histology slides were acquired using this system. 5654-5659 (2008). 14. M. Lee, O. Yaglidere, and A. Ozcan, "Field-portable reflection and transmission microscopy based on lensless holography," Biomed. Opt. Express 2(9), 2721-2730 (2011). 15. G. Zheng, R. Horstmeyer, and C. Yang, "Wide-field, high-resolution Fourier ptychographic microscopy," Nat.Photonics 7(9), 739-745 (2013). 16. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, "Quantitative phase imaging via Fourier ptychographic microscopy," Opt. Lett. 38, 4845-4848 (2013