Anthropogenic air pollution has a severe impact on climate and human health. The immense molecular complexity and diversity of particulate matter (PM) is a result of primary organic aerosol (POA) as well as secondary organic aerosols (SOAs). In this study, a direct inlet probe (DIP), i.e., atmospheric solids analysis probe (ASAP), with ion mobility high-resolution mass spectrometric detection is applied. Primary particulate matter emissions from three sources were investigated. Furthermore, photochemically aged emissions were analyzed. DIP introduction allowed for a direct analysis with almost no sample preparation and resulted in a complex molecular pattern. This pattern shifted through oxidation processes toward heavier species. For diesel emissions, the fuel's chemical characteristic is partially transferred to the particulate matter by incomplete combustion and characteristic alkylated series were found. Polycyclic aromatic hydrocarbons (PAHs) were identified as major contributors. Ion mobility analysis results in drift time profiles used for structural analysis. The apex position was used to prove structural changes, whereas the full-width-at-half-maximum was used to address the isomeric diversity. With this concept, the dominance of one or a few isomers for certain PAHs could be shown. In contrast, a broad isomeric diversity was found for oxygenated species. For the in-depth specification of fresh and aged spruce emissions, the ion mobility resolving power was almost doubled by allowing for three passes in the circular traveling wave design. The results prove that ASAP coupled with ion mobility spectrometry-mass spectrometry (IMS-MS) serves as a promising analytical approach for tackling the vast molecular complexity of PM.