Low–cost biosorbents (ginkgo leaf, osmanthus leaf, banyan leaf, magnolia leaf, holly leaf, walnut shell, and grapefruit peel) were evaluated in the simultaneous removal of La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Yb3+, Lu3+, UO22+, Th4+, Y3+, Co2+, Zn2+, Ni2+, and Sr2+ from aqueous solutions. In single metal systems, all adsorbents exhibited good to excellent adsorption capacities toward lanthanides and actinides. In a simulated multicomponent mixed solution study, higher selectivity and efficiency were observed for Th4+ over other metal cations, with ginkgo leaves providing the highest adsorptivity (81.2%) among the seven biosorbents. Through optimization studies, the selectivity of Th4+ biosorption on ginkgo leaf was found to be highly pH–dependent, with optimum Th4+ removal observed at pH 4. Th4+ adsorption was found to proceed rapidly with an equilibrium time of 120 min and conform to pseudo–second–order kinetics. The Langmuir isotherm model best described Th4+ biosorption, with a maximum monolayer adsorption capacity of 103.8 mg g–1. Thermodynamic calculations indicated that Th4+ biosorption was spontaneous and endothermic. Furthermore, the physical and chemical properties of the adsorbent were determined by scanning electron microscopy, Brunauer–Emmett–Teller, X-ray powder diffraction, and Fourier transform infrared analysis. The biosorption of Th from a real sample (monazite mineral) was studied and an efficiency of 90.4% was achieved from nitric acid at pH 4 using ginkgo leaves.