Rapid magnetic upflows in the quiet-Sun photosphere were recently uncovered from both SUNRISE/IMaX and Hinode/SOT observations. Here, we study magnetic upflow events (MUEs) from high-quality, high-(spatial, temporal, and spectral) resolution, and full Stokes observations in four photospheric magnetically sensitive Fe I lines centered at 5250.21, 6173.34, 6301.51, and 6302.50 Å acquired with the Swedish Solar Telescope (SST)/ CRISP. We detect MUEs by subtracting in-line Stokes V signals from those in the far blue wing whose signal-tonoise ratio (S/N) 7 . We find a larger number of MUEs at any given time (2.0 10 2 arcsec −2), larger by one to two orders of magnitude, than previously reported. The MUEs appear to fall into four classes presenting different shapes of Stokes V profiles with (I) asymmetric double lobes, (II) single lobes, (III) double-humped (two samepolarity lobes), and (IV) three lobes (an extra blueshifted bump in addition to double lobes), of which less than half are single-lobed. We also find that MUEs are almost equally distributed in network and internetwork areas and they appear in the interior or at the edge of granules in both regions. Distributions of physical properties, except for horizontal velocity, of the MUEs (namely, Stokes V signal, size, line-of-sight velocity, and lifetime) are almost identical for the different spectral lines in our data. A bisector analysis of our spectrally resolved observations shows that these events host modest upflows and do not show a direct indication of the presence of supersonic upflows reported earlier. Our findings reveal that the numbers, types (classes), and properties determined for MUEs can strongly depend on the detection techniques used and the properties of the employed data, namely, S/Ns, resolutions, and wavelengths.