Polymers prepared from ionic liquids are widely called polymerized ionic liquids (PILs). Compared to monocationic and dicationic ILs, PILs have higher molecular weights, charge, and greater intermolecular interactions, which make PILs have a higher possibility to generate better lubricity. PILs of poly‐alkylimidazolium bis(trifluoromethylsulfonyl)imide (PImC6NTf2) is studied herein. Dicationic ILs of 1,1′‐(pentane‐1,5‐diyl)‐bis(3‐butylimidazolium) bis(trifluoromethylsulfonyl)imide (BIm5‐(NTf2)2) is used as additive to decrease the crystallization temperature of PImC6NTf2. Lubricity of PImC6NTf2 and PImC6NTf2+BIm5‐(NTf2)2, as well as BIm5‐(NTf2)2 for comparison is evaluated under severe conditions, i.e., 3.0 to 3.5 GPa and 200 °C. The rheological study suggests that PImC6NTf2 can be classified into grease. Tribological test results show that PImC6NTf2 has much better antiwear property than BIm5‐(NTf2)2, especially at 3.5 GPa. Adding 4% BIm5‐(NTf2)2 to PImC6NTf2 is able to reduce friction under high pressure. At 200 °C, PImC6NTf2 exhibits excellent lubricity. The mixture of 96%PImC6NTf2+4%BIm5‐(NTf2)2 shows even better antiwear property than neat PImC6NTf2 and exhibits the highest friction reducing property among the ILs at 200 °C. It is speculated that the robust strength of PILs and strong adhesion between PILs and solids are key factors in achieving the excellent antiwear property.