In the last ten years, the study and the search for new multiferroic materials have been a major challenge due to their potential applications in electronic technology. In this way, bismuth-containing perovskites (BiMO(3)), and particularly those in which the metal M position is occupied by a magnetically active cation, have been extensively investigated as possible multiferroic materials. From the point of view of synthesis, only a few of the possible bismuth-containing perovskites can be prepared by conventional methods but at high pressures. Herein, the preparation of one of these potential multiferroic systems, the solid solution xBiMnO(3)-(1-x)PbTiO(3) by mechanosynthesis is reported. Note that this synthetic method allows the oxides with high x values, and more particularly the BiMnO(3) phase, to be obtained as nanocrystalline phases, in a single step and at room temperature without the application of external pressure. These results confirm that, in the case of Bi perovskites, mechanosynthesis is a good alternative to high-pressure synthesis. These materials have been studied from the point of view of their structural characteristics by precession electron diffraction and magnetic property measurements.