The mixed conducting perovskite-type oxides BaxSr1-xCo1-yFeyO3-δ (BSCF) are intensively studied as potential high-performance solid oxide fuel cell cathode materials. The effect of different compositional variables and oxygen stoichiometry on the structure and thermodynamic stability of the BaxSr1-xCo1-yFeyO3-δ (x = 0.2, 0.4, 0.5, 0.6, 0.8; y = 0.2, 0.4, 0.6, 0.8, 1) perovskite-type compositions were investigated by solid electrolyte electrochemical cells method and scanning electron microscopy (SEM). The thermodynamic quantities represented by the partial molar free energies, enthalpies and entropies of oxygen dissolution in the perovskite phase, as well as the equilibrium partial pressures of oxygen were obtained in the temperature range of 823–1273 K. The in situ change of oxygen stoichiometry and the determination of thermodynamic parameters of the new oxygen-deficient BSCF compositions were studied via coulometric titration technique coupled with electromotive force (EMF) measurements. The effect of A- and B-site dopants concentration correlated to the variation of oxygen stoichiometry on the thermodynamic stability and morphology of the BSCF samples was evidenced.