In line with the classic phonon-glass electron-crystal (PGEC) paradigm, semiconducting and semimetallic multinary compounds remain the cornerstone of the state-of-the-art thermoelectric materials. By contrast, elemental PGEC is very rare. In this work, we report a thermoelectric study of monolayer α-Te by first-principles calculations and solving the parameterfree Boltzmann transport equation. It is found that monolayer α-Te possesses high electron mobility (about 2500 cm 2 V −1 s −1 ) at room temperature due to small effective mass, low phonon frequencies, and thus a restricted phase space for electron−phonon scattering. In monolayer α-Te, the electrons near the conduction band edge are mainly scattered by the heavily populated quadratically dispersing out-of-plane acoustic (ZA) phonon modes. The thermoelectric figure of merit (ZT) for n-type monolayer α-Te is 0.55 at 300 K and 1.46 at 700 K. Notably, tensile strain stiffens the ZA modes, yielding a linear energy-momentum dispersion relation and the removal of the diverging thermal population of ZA phonons. Consequently, the electron mobility is enhanced. At a 4% tensile strain, the electron mobility can reach up to 8000 cm 2 V −1 s −1 at room temperature while the thermal conductivity is almost unaffected, yielding a state-of-the-art ZT value of 0.94 and 2.03 in n-type monolayer α-Te at 300 and 700 K, respectively. For completeness, the thermoelectric study of p-type monolayer α-Te is also conducted. These results beckon further experiments toward high-performance α-Te-based thermoelectric materials via doping, alloying, and compositing.