C. difficile
infection (CDI) is a leading healthcare-associated
infection with a high morbidity and mortality and is a financial burden.
No current standalone point-of-care test (POCT) is sufficient for
the identification of true CDI over a disease-free carriage of
C. difficile
, so one is urgently required to ensure timely,
appropriate treatment. Here, two types of binding proteins, Affimers
and nanobodies, targeting two
C. difficile
biomarkers,
glutamate dehydrogenase (GDH) and toxin B (TcdB), are combined in
NanoBiT (NanoLuc Binary Technology) split-luciferase assays. The assays
were optimized and their performance controlling parameters were examined.
The 44 fM limit of detection (LoD), 4–5 log range and 1300-fold
signal gain of the TcdB assay in buffer is the best observed for a
NanoBiT assay to date. In the stool sample matrix, the GDH and TcdB
assay sensitivity (LoD = 4.5 and 2 pM, respectively) and time to result
(32 min) are similar to a current, commercial lateral flow POCT, but
the NanoBit assay has no wash steps, detects clinically relevant TcdB
over TcdA, and is quantitative. Development of the assay into a POCT
may drive sensitivity further and offer an urgently needed ultrasensitive
TcdB test for the rapid diagnosis of true CDI. The NanoBiTBiP (NanoBiT
with Binding Proteins) system offers advantages over NanoBiT assays
with antibodies as binding elements in terms of ease of production
and assay performance. We expect this methodology and approach to
be generally applicable to other biomarkers.