Following traumatic brain injury (TBI), resultant voids are unable to support injections of suspension treatments, leading to ineffective healing. Moreover, without a structure to support the large defect, the defect site suffers from mechanical instability, which may impair the healing process. Therefore, having a delivery vehicle that can temporarily fill and provide mechanical support to the defect site may alleviate the healing process. In this work, we reported for the first time, the inflammatory response of brain tissue with polycaprolactone (PCL) and PCLtricalcium phosphate (TCP) scaffolds designed and fabricated for cranial reconstruction. After cranial defects were created in Sprague-Dawley rats, PCL and PCL-TCP scaffolds were implanted for a period of 1 week and 1 month. Following histology and immunofluorescence staining with the ionized calcium binding adaptor molecule-1 (IBA-1), glial fibrillary acidic protein (GFAP), nestin, and neuronal nuclei (NeuN), results indicated that IBA-1-positive activated microglia were observed across all groups, and declined significantly by 1 month ( p < 0.05). Interestingly, IBA-1-positive microglia were significantly fewer in the PCL-TCP group ( p < 0.05), suggesting a relatively milder inflammatory response. A decrease in the number of GFAP-positive cells among all groups over time ( > 29%) was also observed. Initially, astrocyte hypertrophy was observed proximal to the TBI site (55% in PCL and PCL-TCP groups, 75% in control groups), but it subsided by 1 month. Proximal to the TBI site, nestin immunoreactivity was intense during week 1, and which reduced by 1 month across all groups. NeuN-positive neurons were shrunken proximal to the TBI site ( < 0.9 mm), 32% smaller in the PCL-TCP group and 27% smaller in the PCL group. Based on above data indicating the comparatively milder, initial inflammatory response of brain tissue to PCL-TCP scaffolds, it is suggested that PCL-TCP scaffolds have notable clinical advantages as compared to PCL scaffolds.