The basic features of nucleus-acoustic (NA) envelope bright and dark solitons, which exist in degenerate quantum plasmas, have been theoretically investigated by deriving the nonlinear Schrödinger (NLS) equation. The reductive perturbation method, which is valid for a small but finite amplitude limit, is employed. It is found that the bright envelope solitons are modulationally unstable, whereas the dark ones are stable. It is also observed that the fundamental properties (viz. Modulational instability (MI) growth rate, width and energy concentration of NA waves, etc.) of NA unstable bright envelope solitons are significantly modified by constituent particles number density. The implications of our results obtained from our present investigation in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.