2020
DOI: 10.1007/978-3-030-62005-9_1
|View full text |Cite
|
Sign up to set email alerts
|

Higher-Order Graph Convolutional Embedding for Temporal Networks

Abstract: Temporal networks are networks that edges evolve over time. Network embedding is an important approach that aims at learning lowdimension latent representations of nodes while preserving the spatialtemporal features for temporal network analysis. In this paper, we propose a spatial-temporal higher-order graph convolutional network framework (ST-HN) for temporal network embedding. To capture spatialtemporal features, we develop a truncated hierarchical random walk sampling algorithm (THRW), which randomly sampl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?