Deformation imaging in echocardiography has been shown to have better diagnostic and prognostic value than conventional anatomical measures such as ejection fraction. However, despite clinical availability and demonstrated efficacy, everyday clinical use remains limited at many hospitals. The reasons are complex, but practical robustness has been questioned, and a large inter-vendor variability has been demonstrated. In this work, we propose a novel deep learning based framework for motion estimation in echocardiography, and use this to fully automate myocardial function imaging. A motion estimator was developed based on a PWC-Net architecture, which achieved an average end point error of (0.06 ± 0.04) mm per frame using simulated data from an open access database, on par or better compared to previously reported state