This paper reveals the influence of doping on the morphological, structural, and optical properties of zinc oxide (ZnO) nanoparticles (NPs) synthesized by pneumatic spray pyrolysis technique (PSP), using zinc ethoxide ZnO2CH32 as the precursor. The prepared samples were characterized by XRD, HRTEM, SEM-EDX, UV-Vis spectroscopy, and RS. RS analysis has revealed that the unmodified ZnO and carbon modified ZnO samples have characteristic Raman optic modes at 325 cm−1, 373 cm−1, and 432 cm−1 belonging to Wurtzite ZnO structure. The XRD ZnO (C:ZnO) NPS have characteristic peaks of hexagonal Wurtzite ZnO structure. HRTEM analysis has revealed that the synthesized ZnO NPs have particle size range of 8.8–11.82 nm. EDX spectra of both unmodified and modified ZnO nanoparticles have revealed prominent peaks at 0.51 keV, 1.01 keV, 1.49 keV, 8.87 keV, and 9.86 keV. The occurrence of these peaks in the EDX spectra endorses the existence of Zn and O atoms in the PSP synthesized ZnO NPs. The UV-Vis spectroscopy has revealed a red shift of the absorption edge, with the increase in C dopant level. The effect of nanocrystallite size and the gradual prominence of C into ZnO matrix due to increase in C dopant level in the PSP synthesized ZnO NPs was meticulously elaborated through Raman spectroscopy analysis.