Quantum dots (QDs) are semiconductor nanoparticles (NPs) that have gained significant interest in the academia and industry because of their unique optoelectronic properties such as tunable emission wavelength, high color purity, wide color gamut, and high photoluminescence quantum yield. However, it remains a challenge to fabricate a QD colloid or solution into solid devices featuring the desired patterns and maintaining high efficiency. Recently, researchers have shown significant progress in the efficiency improvement and device fabrication of QD-based displays, contributed by the development of both materials and device engineering. In this review, the recent progress in the engineering of QDs will be discussed, with an emphasis on the encapsulation methods and patterning strategies by which QDs are packaged into solid-state devices with pixelated patterns as well as luminescence enhancement and modulation.