In this study, we demonstrate a one-step method for fabricating a novel sodium alginate-polyacrylamide (Alg–PAM) composite aerogel, which exhibits a very high affinity and selectivity towards Pb2+. The as-prepared Alg–PAM composite aerogel can uptake 99.2% of Pb2+ from Pb2+-containing aqueous solution (0.1 mM) and the maximum adsorption capacity for Pb2+ reaches 252.2 mg/g, which is higher than most of the reported Pb2+ adsorbents. Most importantly, the prepared Alg–PAM adsorbent can be regenerated through a simple acid-washing process with only a little loss of the adsorption performance after five adsorption–desorption cycles. In addition, the influence of the experimental conditions, such as the solution pH, contact time, and temperature, on the adsorption performance of the Alg–PAM adsorbent was studied. It is clear that the low-cost raw materials, simple synthesis, regeneration ability, and highly efficient removal performance mean that the designed Alg–PAM aerogel has broad application potential in treating Pb2+-containing wastewater.