The synthesis, photophysical properties, and applications of highly fluorescent and phosphorescent palladium complexes are reviewed, covering the period 2018–2022. Despite the fact that the Pd atom appears closely related with an efficient quenching of the fluorescence of different molecules, different synthetic strategies have been recently optimized to achieve the preservation and even the amplification of the luminescent properties of several fluorophores after Pd incorporation. Beyond classical methodologies such as orthopalladation or the use of highly emissive ligands as porphyrins and related systems (for instance, biladiene), new concepts such as AIE (Aggregation Induced Emission) in metallacages or in coordination-driven supramolecular compounds (CDS) by restriction of intramolecular motions (RIM), or complexes showing TADF (Thermally Activated Delayed Fluorescence), are here described and analysed. Without pretending to be comprehensive, selected examples of applications in areas such as the fabrication of lighting devices, biological markers, photodynamic therapy, or oxygen sensing are also here reported.