From the past few decades, photodetectors (PDs) are being regarded as crucial components of many photonic devices which are being used in various important applications. However, the PDs based on the traditional bulk semiconductors still face a lot of challenges as far as the device performance is concerned. To overcome these limitations, a novel class of two-dimensional materials known as transition metal dichalcogenides (TMDCs) has shown great promise. The TMDCs-based PDs have been reported to exhibit competitive figures of merit to the state-of-the-art PDs, however, their production is still limited to laboratory scale due to limitations in the conventional fabrication methods. Compared to these traditional synthesis approaches, the technique of pulsed laser deposition (PLD) offers several merits. PLD is a physical vapor deposition approach, which is performed in an ultrahigh-vacuum environment. Therefore, the products are expected to be clean and free from contaminants. Most importantly, PLD enables actualization of large-area thin films, which can have a significant potential in the modern semiconductor industry. In the current chapter, the growth of TMDCs by PLD for applications in photodetection has been discussed, with a detailed analysis on the recent advancements in this area. The chapter will be concluded by providing an outlook and perspective on the strategies to overcome the shortcomings associated with the current devices.