A subclone of NG108-15 neuroblastoma-glioma hybrid cells was used to study the intracellular distribution of opioid receptors. Subcellular organelles were separated on self-generating Percoll-sucrose gradients and the enzymes beta-glucuronidase, galactosyltransferase, 5'-nucleotidase, and glucose-6-phosphatase were used as markers to localize the various structures. Analysis of the receptor distribution from untreated cells shows that the plasma membranes contained the highest receptor density, but a significant portion of the opioid binding sites was unevenly distributed between the lysosomes, microsomes, and Golgi elements. The enzyme markers indicated that appearance of opioid receptors in these intracellular structures does not result merely from contamination with plasma membranes. About 11% of the receptors appeared in a fraction lighter than plasma membranes. The antilysosomal agent chloroquine altered the intracellular compartmentation of the receptors, possibly by blocking their translocation in the cells. Leu-enkephalin induced time-dependent loss of receptors from all four intracellular compartments examined, but a kinetic analysis showed that the rate of receptor loss in these fractions was not identical. Thus, the percent of receptors appearing in the lysosomal fraction that could still bind [3H]D-Ala2-D-Leu5-enkephalin in vitro was increased on treatment with Leu-enkephalin. As an additional approach to follow the intracellular fate of the receptors, cells were labeled with [3H]diprenorphine, chased with various unlabeled opiates, and the distribution of 3H-ligand-receptors in the cells was monitored. Leu-enkephalin and etorphine altered the distribution of receptor-bound [3H]diprenorphine between the plasma membranes, lysosomes, and Golgi elements, whereas morphine had no such effect. The study sheds light on the role of intracellular structures in the metabolism of opioid receptors in untreated and opioid-treated cells.