An electrochemical sensor for amoxicillin (AMX) detection based on reduced graphene oxide (RGO), molecular imprinted overoxidized polypyrrole (MIOPPy) modified with gold nanoparticles (AuNPs) is described in this work. The electrochemical behavior of the imprinted and non‐imprinted polymer (NIP) was carried out by cyclic voltammetry (CV) and impedance spectroscopy (IS). The structure and morphology of the prepared MIP sensor were characterized by scanning electron microscopy (SEM), UV‐Visible, Fourier transform infrared spectroscopy (FTIR) and its experimental parameters such as monomer and template concentration, pH buffer solution, incubation time of AMX and AuNPs, scan rate as well as electropolymerization scan cycles were optimized to improve the performance of the sensor. The peak current obtained at the MIP electrode was proportional to the AMX concentration in the range from 10−8 to 10−3 mol L−1 with a detection limit and sensitivity of 1.22 10−6 mol L−1 (Signal to noise ratio=3) and 2.52×10−6 μAmol−1 L, respectively. It was also found that this sensor exhibited reproducibility and excellent selectivity against molecules with similar chemical structures. Besides, the analytical application of the AMX sensor confirms the feasibility of AMX detection in milk and human serum.