We have developed a polydiacetylene (PDA)-based sensing platform to detect testosterone (T) as a potential biomarker of preterm birth. The insolubility of the steroid hormone in water, where PDA assemblies are dispersed, poses a major issue, since they can hardly interact with each other. To overcome this challenge, acetonitrile was used as a suitable solvent. In addition, to minimize false signals of PDA assemblies caused by the solvent, a mixture of acetonitrile and distilled water was selected. To prove a concept of PDA-based sensing platform for targeting T hormone, we conjugated anti-T antibodies to surface of PDA assemblies to induce selective binding between T and anti-T antibodies. The fluorescence sensory signaling of the PDA-anti-T antibody conjugate was selectively generated for T, over 3.4 times higher sensitivity of the signaling compared to that from other sex steroid hormones studied (β-estradiol and progesterone).