The influence of two polysaccharides, native corn starch and carboxymethyl cellulose (CMC), on the precipitation of calcium carbonate was examined by utilizing two different carbonation processes. In a batch process, carbon dioxide gas was fed through calcium hydroxide slurry at pH 11.5 to 12.0. The reaction was complete when the pH had been decreased to 7. In a fed-batch reaction, the carbon dioxide was dissolved in water while calcium hydroxide was pumped into the water, maintaining a constant pH of 6.0±0.5. Scanning electron microscopy, particle size analysis, and specific surface area analysis were used to characterize the structure of the precipitated calcium carbonate (PCC) pigments. In application testing, the impact of modified pigments on paper properties was examined. The results showed that carbohydrates can significantly affect the crystallization of calcium carbonate, but the influence depends on the precipitation conditions and the type and concentration of the carbohydrate added. The starch-modified PCC, produced by the fed-batch reaction, improved the mechanical properties of the paper, whereas CMCmodified PCC yielded paper with good surface and optical performance but weakened strength properties.