Steroids and their oxidation products are widely distributed in living organisms and are important intermediates for the synthesis of many biologically active molecules. Due to their pharmacological and synthetic relevance, several oxidative chemical processes for the functionalization of the steroid nucleus have been developed. Green chemistry principles have been incorporated in some oxidative transformations of steroids, allowing significant advances in synthetic chemistry applied to these compounds. This chapter presents a selection of relevant applications of pharmaceutical green chemistry to steroid's oxidative processes. Special emphasis is given to catalytic processes encompassing heterogeneous nanocatalysts, whose application in this context is increasing over the past years. This chapter is organized according to the reaction type that includes alcohol oxidation, epoxidation of alkenes, and allylic oxidation of alkenes to enones, among other relevant oxidative transformations. Biocatalytic oxidative methods applied to steroid synthesis are not included in this review.