[ A coherent framework for multiscale signal and image processing ] T he dual-tree complex wavelet transform (CWT) is a relatively recent enhancement to the discrete wavelet transform (DWT), with important additional properties: It is nearly shift invariant and directionally selective in two and higher dimensions. It achieves this with a redundancy factor of only 2 d for d-dimensional signals, which is substantially lower than the undecimated DWT. The multidimensional (M-D) dual-tree CWT is nonseparable but is based on a computationally efficient, separable filter bank (FB). This tutorial discusses the theory behind the dual-tree transform, shows how complex wavelets with good properties can be designed, and illustrates a range of applications in signal and image processing. We use the complex number symbol C in CWT to avoid confusion with the often-used acronym CWT for the (different) continuous wavelet transform.
BACKGROUNDThis article aims to reach two different audiences. The first is the wavelet community, many members of which are unfamiliar with the utility, convenience, and unique properties of complex wavelets. The second is the broader class of signal processing folk who work with applications where the DWT has proven somewhat disappointing, such as those involving complex or modulat-