Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The presence of a stellar companion can place constraints on occurrence and orbital evolution of satellites orbiting exoplanets, i.e., exomoons. In this work we revise earlier orbital stability limits for retrograde orbits in the case of a three-body system consisting of a star, planet, and satellite. The revised limit reads a sat crit ≈ 0.668 ( 1 − 1.236 e p ) for e p ≤ 0.8 in units of the Hill Radius and represents the lower critical orbit as a function of the planetary eccentricity e p. A similar formula is determined for exomoons hosted by planets in binary star systems, where e p is replaced with the components of free and forced eccentricity from secular orbit evolution theory. By exploring the dynamics of putative exomoons in α Centauri AB we find that the outer stability limit can be much less than half the Hill Radius due to oscillations in the planetary orbital eccentricity caused by the gravitational interaction with the binary star. We show, furthermore, how the resulting truncation of the outer stability limit can affect the outward tidal migration and potential observability of exomoons through transit-timing variations (TTVs). Typical TTV (rms) amplitudes induced by exomoons in binary systems are ≲10 minutes and appear more likely for planets orbiting the less massive stellar component.
The presence of a stellar companion can place constraints on occurrence and orbital evolution of satellites orbiting exoplanets, i.e., exomoons. In this work we revise earlier orbital stability limits for retrograde orbits in the case of a three-body system consisting of a star, planet, and satellite. The revised limit reads a sat crit ≈ 0.668 ( 1 − 1.236 e p ) for e p ≤ 0.8 in units of the Hill Radius and represents the lower critical orbit as a function of the planetary eccentricity e p. A similar formula is determined for exomoons hosted by planets in binary star systems, where e p is replaced with the components of free and forced eccentricity from secular orbit evolution theory. By exploring the dynamics of putative exomoons in α Centauri AB we find that the outer stability limit can be much less than half the Hill Radius due to oscillations in the planetary orbital eccentricity caused by the gravitational interaction with the binary star. We show, furthermore, how the resulting truncation of the outer stability limit can affect the outward tidal migration and potential observability of exomoons through transit-timing variations (TTVs). Typical TTV (rms) amplitudes induced by exomoons in binary systems are ≲10 minutes and appear more likely for planets orbiting the less massive stellar component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.